Using CaO- and MgO-rich industrial waste streams for carbon sequestration

نویسندگان

  • Joshuah K. Stolaroff
  • Gregory V. Lowry
  • David W. Keith
چکیده

To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH)2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO3). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO2 sequestered. The scheme would be important as an early application of technology for capturing CO2 directly from ambient air. 2004 Elsevier Ltd. All rights reserved. * Corresponding author. Tel.: +1-412-268-2948; fax: +1-412-268-7813. E-mail address: [email protected] (G.V. Lowry). 1 Now at: Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4. 0196-8904/$ see front matter 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.enconman.2004.05.009 688 J.K. Stolaroff et al. / Energy Conversion and Management 46 (2005) 687–699

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECT OF A FOURTH COMPONENT (Na2O, SrO, MgO AND BaO) ADDITION TO CaO-Al2O3-SiO2 SYNTHETIC SLAG ON SULFUR REMOVAL FROM PLAIN CARBON STEEL

In this paper, the effect of MgO, BaO, Na 2 O and SrO addition to a pre-melted CaO-Al2O3 -Si 2 O synthetic slag on sulfur removal from plain carbon steel was studied under the same experimental conditions. The slags were pre-melted at 1400°C in an electric resistant furnace and desulfurization experiments were carried out in a high frequency induction furnace. The results showed that ...

متن کامل

Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.

The increasing CO(2) concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO(2). In the present study, w...

متن کامل

Prospects in Waste Oil Shale Ash Sustainable Valorization

An innovative approach utilizing highly alkaline oil shale waste ash and carbon dioxide gas (CO2), associated with power production, as a resource for production of precipitated calcium carbonate (PCC) is introduced in this paper. The specifics and feasibility of the integrated ash valorization and CO2 sequestration process by indirect aqueous carbonation of lime-consisting ash were elaborated ...

متن کامل

Carbon Sequestration Potential of Constructed Wetlands Used for Wastewater Treatment

Wetlands present an important opportunity for carbon sequestration and greenhouse gas offsets by virtue of their potential for restoration using known and innovative land management methods, because inherently they are highly productive and accumulate large below-ground stocks of organic carbon. Wetlands are major carbon sinks. While vegetation traps atmospheric CO2 in wetlands and other ecosys...

متن کامل

Biodiesel: A Cost-effective Fuel Using Waste Materials

The main disadvantage of biodiesel is its high price. The price of biodiesel depends on various factors such as the price of oil, methanol, catalyst, and labor. Among dif-ferent economic factors, oil accounts for the largest share of input costs of biodiesel production. In this study, first, suitable heterogeneous catalysts were identified for biodiesel production. Several studies were carried ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004